Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Three-dimensional networks in 5-methylimidazolium 3-carboxy-4hydroxybenzenesulfonate and bis(5methylimidazolium) 3-carboxylato-4-hydroxybenzenesulfonate

Xiang-Gao Meng, ${ }^{\mathbf{a} *}$ Yi-Long Xiao, ${ }^{\mathbf{b}} \mathbf{Z i}$-Liang Wang ${ }^{c}$ and Chang-Lin Liu ${ }^{\text {a }}$

${ }^{\text {a }}$ Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, ${ }^{\mathbf{b}}$ College of Physical Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China, and 'Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China
Correspondence e-mail: mengxianggao@mail.ccnu.edu.cn

Received 24 October 2007
Accepted 17 December 2007
Online 12 January 2008

The two title proton-transfer compounds, 5-methylimidazolium 3-carboxy-4-hydroxybenzenesulfonate, $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+}$.$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-}$, (I), and bis(5-methylimidazolium) 3-carboxylato-4-hydroxybenzenesulfonate, $2 \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{2-}$, (II), are each organized into a three-dimensional network by a combination of $X-\mathrm{H} \cdots \mathrm{O}(X=\mathrm{O}, \mathrm{N}$ or C$)$ hydrogen bonds, and $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

5-Sulfosalicylic acid ($5-\mathrm{H}_{2} \mathrm{SSA}$) and its organic complexes or salts can develop well defined noncovalent supramolecular architectures because of their ability to form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites (Smith et al., 2004, 2006; Smith, Wermuth \& White, 2005a,b; Smith, Wermuth \& Healy, 2005; Muthiah et al., 2003; Raj et al., 2003; Fan et al., 2005; Wang et al., 2007). Our interest in these materials arises from their potential to display three-dimensional structural diversity. In continuation of our studies of hydrogen-bonding networks formed with $5-\mathrm{H}_{2} \mathrm{SSA}$ and Lewis bases (Meng et al., 2007), we report here our findings on another two organic salts, both composed of $5-\mathrm{H}_{2} \mathrm{SSA}$ and 5-methylimidazole $(5-\mathrm{MeIm}), 5-\mathrm{MeIm}^{+} \cdot 5-\mathrm{HSSA}^{-}$, (I), and $\left(5-\mathrm{MeIm}^{+}\right)_{2} \cdot 5-\mathrm{SSA}^{2-}$, (II).

Both anhydrous compounds crystallize in the space group $P 2{ }_{1} / c$, with $Z^{\prime}=2$ in (I), but $Z^{\prime}=1$ in (II) (Fig. 1). These different values may result from the experimental conditions (Das et al., 2006; Anderson et al., 2007). The powder X-ray diffraction patterns of bulk (I) and (II) are in good agreement
with the calculated patterns based on the results from singlecrystal X-ray diffraction (Fig. 2). Like most analogues containing the 5-HSSA ${ }^{-}$anion, the sulfonic acid H atoms transfer to the Lewis base N atoms in preference to the carboxyl group

in these two compounds, and the hydroxyl O atom forms a common intramolecular $S(6)$ ring with the carboxyl group [for hydrogen-bonding motifs, see Bernstein et al. (1995)]. With the aim of investigating the probable molar ratio of $5-\mathrm{H}_{2}$ SSA with other Lewis bases in crystallized products, a search of the Cambridge Structural Database [ConQuest, Version 1.9, September 2006 release; Allen (2002); Bruno et al. (2002)] for organic compounds containing at least one of the $5-\mathrm{H}_{2} \mathrm{SSA}$, $5-\mathrm{HSSA}^{-}$and $5-\mathrm{SSA}^{2-}$ moieties was conducted to determine the numbers of such organic adducts. As a result, three, 26 and four crystal structures with three-dimensional coordinates were found for the neutral, monoanionic or dianionic moieties, respectively, from which we can see that in most cases only the sulfonic acid H atoms transfer to the Lewis base atoms, forming 1:1 molecular adducts.

In the molecular structures of (I) and (II), the relative conformations between the sulfonate groups and their

(I)

(II)

Figure 1
The molecular structures of (I) and (II), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
attached benzene rings are slightly different. In (I), the plane consisting of atoms O4/O5/O6 makes a dihedral angle of 83.9 (1) ${ }^{\circ}$ with the $\mathrm{C} 1-\mathrm{C} 6$ aryl ring, with the distances of each O atom from the benzene plane being ca 1.598 (1), 0.572 (1) and 0.367 (1) \AA, respectively; the $\mathrm{O} 10 / \mathrm{O} 11 / \mathrm{O} 12$ plane makes a dihedral angle of $86.1(1)^{\circ}$ with its adjacent aryl ring, and the distances of each O atom from the benzene plane are $c a$ 1.536 (1), 0.632 (1) and 0.462 (1) A. respectively. However, the corresponding angles and distances in (II) are $85.3(1)^{\circ}$ and $c a$ 1.379 (1), 1.025 (1) and 0.161 (1) \AA, which are different from those in (I). The spatial difference between the sulfonate O -atom plane and the benzene rings may be the result of these

Figure 2
Experimental and simulated power diffraction patterns for (I) and (II).
hydrogen-bonding interactions involving the sulfonate O atoms.

In the packing structures of both title compounds, the components are linked into three-dimensional frameworks by combinations of $X-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds ($X=\mathrm{O}, \mathrm{N}$ or C) and $\pi-\pi$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ noncovalent interactions. In (I), the supramolecular structure can be readily analyzed in terms of three simple substructures.

In the first of these substructures, imidazole atoms N 1 and N 2 at (x, y, z) act as hydrogen-bond donors to sulfonate atom O6 at (x, y, z) and carboxyl atom O 2 at $(x, y-1, z)$, respectively, forming a one-dimensional chain generated by translation running parallel to the [010] direction. Similarly, carboxyl atom O1 at (x, y, z) acts as hydrogen-bond donor to sulfonic atom O 4 at $\left(-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$, producing another onedimensional chain also running parallel to the [010] direction, but this time generated by 2_{1} screw axis lying at $\left(0, y, \frac{3}{4}\right)$. By a combination of these three hydrogen-bonding interactions, S1-containing anions and N1/N2-containing cations are interlinked into a one-dimensional tape (denoted tape A) built from $R_{4}^{4}(20)$ rings running along the [010] direction. Almost completely similar to the formation of tape A, S2-containing anions and $\mathrm{N} 3 / \mathrm{N} 4$-containing cations are also linked by four hydrogen bonds into another one-dimensional tape (denoted tape B) also running parallel to the [010] direction, in which atoms N3, N4 and O7 act as hydrogen-bond donors to symmetry-related atoms $\mathrm{O} 10, \mathrm{O} 8$ and O 11 , respectively (Table 1 and Fig. 3).

The second substructure is formed by means of three intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and adjacent tapes A and B are joined together into a two-dimensional layer (Fig. 4) running parallel to the (001) direction lying in the domain $0.532<z<0.958$. This layer is consolidated by two inner $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left(\mathrm{C} 18-\mathrm{H} 18 A \cdots C g 4{ }^{\text {vii }}\right.$ and $\mathrm{C} 22-$ $\mathrm{H} 22 \mathrm{C} \cdots C g 3^{\text {viii }}$; full details and symmetry codes are given in Table 1) and two $\pi-\pi$ stacking interactions ($C g 1 \cdots C g 2^{\text {ix }}$ and $C g 3 \cdots C g 3^{\mathrm{v}}$; full details and symmetry codes are given in

Figure 3
Part of the crystal structure of (I), showing the formation of tapes A and B, the one-dimensional chains running parallel to the [010] direction. Hydrogen bonds are shown as dashed lines. The top and bottom outlined areas show the tape A and tape B chains, respectively.

Table 3). The three-dimensional network in (I) is ultimately shaped through linking of adjacent up and down (001) layers by a combination of another three $\pi-\pi$ stacking interactions, i.e. $C g 1 \cdots C g 1^{\mathrm{v}}, C g 2 \cdots C g 4^{\mathrm{vi}}$ and $C g 4 \cdots C g 2^{\text {vi }}$ (Table 3).

By comparison, components in (II) are also linked into a three-dimensional network by a combination of $X-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds ($X=\mathrm{N}, \mathrm{O}$ or C) and $\pi-\pi$ stacking interactions, which can be analysed more easily than those in (I). Firstly, $5-\mathrm{SSA}^{2-}$ and $5-\mathrm{MeIm}^{+}$ions are linked together into a one-dimensional column structure (Fig. 5) by a combination of four intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1-$ $(-x+1,-y, z-2)$ hydrogen bonds. Atoms N3, N4 and C14 act as hydrogen-bond donors, via atoms $\mathrm{H} 3 A, \mathrm{H} 14 A$ and $\mathrm{H} 4 A$, respectively, to each symmetry-related sulfonate atom O 4 or O 2 and carboxyl atom O 1 , forming a centrosymmetric $R_{4}^{4}(14)$ ring centred at $\left(\frac{1}{2}, 0,1\right)$ and two asymmetric $R_{2}^{2}(11)$ rings. Adjacent discrete edge-fused $R_{4}^{4}(14)$ and $R_{2}^{2}(11)$ rings are joined together by intermolecular $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 6$ and $\mathrm{N} 2-$ $\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$ hydrogen bonds, forming a one-dimensional column structure running parallel to the [101] direction, which is further strengthened by a $\pi-\pi$ stacking interaction between two adjacent imidazole rings (Cg1 $\cdots C g 2^{\text {i }}$; Table 3).

Next, adjacent [101] columns are linked by the $\pi-\pi$ stacking interaction (i.e. Cg2 ..Cg2 ${ }^{\mathrm{v}}$) formed between two N3/N4containing imidazole rings, producing a two-dimensional layer (Fig. 5) running parallel to the (010) plane. The reference twodimensional layer lies in the domain $-0.226<y<0.226$ and two such two-dimensional layers pass through each unit cell. Finally, neighbouring (010) two-dimensional layers are linked into a three-dimensional network by two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2), each of which produces a $C(11)$ chain running parallel to the [201] direction and generated by the c-glide plane at $y=\frac{1}{4}$.

In comparison with the stacking pattern of sulfonic aryl and Lewis base heterocyclic rings (Meng et al., 2007), in (I) both the sulfonic aryl and imidazole rings form an up and down homogeneous arrangement, i.e. 5-HSSA ${ }^{-}$anions stack only on top of 5-HSSA ${ }^{-}$anions and $5-\mathrm{MeIm}^{+}$cations stack only on top

Figure 4
Part of the crystal structure of (I), showing the formation of the twodimensional network built from hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions, shown as dashed lines.

Figure 5
Part of the crystal structure of (II), showing the formation of the threedimensional network. Hydrogen bonds and $\pi-\pi$ interactions are shown as dashed lines.
of $5-\mathrm{MeIm}^{+}$cations. In (II), the imidazole rings also stack homogeneously, but the 5-SSA ${ }^{2-}$ dianions adopt an almost linear arrangement, which is completely different to that in (I) and the analogues previously reported by us.

In conclusion, the formation of these two three-dimensional networks in (I) and (II) may be largely attributed to the different directional outspread of the sulfonate O atoms acting as hydrogen-bond acceptors. The different arrangement of the aryl and heterocyclic rings in the crystalline state may be mainly related to the crystallization temperature. Further research on how temperature and other related factors effect the crystallization behaviour is currently underway.

Experimental

All reagents and solvents were used as obtained without further purification. Equivalent molar quantities of 2-methylimidazole $(0.2 \mathrm{mmol}, 16.2 \mathrm{mg})$ and 5-sulfosalicylic acid dihydrate $(0.2 \mathrm{mmol}$, 50.8 g) were dissolved in 95% methanol (10 ml). The mixture was stirred for 10 min at ambient temperature and then filtered. The resulting colourless solution was kept in air for two weeks. Blockshaped colourless crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel. The crystals were filtered off carefully, washed with distilled water and dried in air (yield $56 \%, 38 \mathrm{mg}$, based on the $1: 1$ organic salt).

Crystals of (II) were obtained by mixing $2: 1$ molar quantities of 2-methylimidazole $(0.2 \mathrm{mmol}, 16.2 \mathrm{mg})$ and 5 -sulfosalicylic acid dihydrate $(0.1 \mathrm{mmol}, 25.4 \mathrm{mg})$ in 95% methanol $(10 \mathrm{ml})$. The mixture was stirred for 30 min at 330 K and then filtered. The resulting colourless solution was kept in air for 3 d . Block-shaped colourless crystals of (II) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel. The crystals were filtered off carefully, washed with distilled water and dried in air (yield $40 \%, 17.0 \mathrm{mg}$, based on the $2: 1$ organic salt).

Compound (I)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{6} \mathrm{~S}^{-}$
$M_{r}=300.29$
Monoclinic, $P 2_{1} / c$
$a=13.2702$ (6) A
$b=14.9930$ (7) \AA
$c=14.0947$ (7) \AA
$\beta=115.471(1)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997b) $T_{\text {min }}=0.951, T_{\text {max }}=0.983$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.158$
$S=1.01$
4971 reflections
387 parameters
$V=2531.7(2) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=294$ (2) K
$0.10 \times 0.10 \times 0.06 \mathrm{~mm}$

25930 measured reflections 4971 independent reflections 2829 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.078$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.52 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$) for (I).
$C g 3$ is the centroid of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 15-\mathrm{C} 17$ ring and $C g 4$ is the centroid of the N3/N4/C19-C21 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\text {i }}$	0.84 (4)	1.76 (4)	2.588 (3)	166 (4)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\text {ii }}$	0.90 (4)	2.10 (4)	2.916 (4)	152 (3)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} \mathrm{B}^{\mathrm{ii}}$	0.89 (4)	2.20 (4)	2.913 (4)	136 (3)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 11^{\text {iii }}$	0.89 (4)	2.55 (4)	3.186 (4)	129 (3)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 11^{\text {iv }}$	0.86 (4)	1.74 (4)	2.596 (3)	173 (4)
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{O} 9^{\text {v }}$	0.93	2.52	3.378 (5)	154
C22-H22C...O1 ${ }^{\text {v }}$	0.96	2.55	3.445 (5)	156
C19-H19 . . $\mathrm{O}^{\text {vi }}$	0.93	2.33	3.241 (5)	167
$\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O} 6$	0.91 (4)	1.87 (4)	2.740 (4)	158 (3)
N3-H3A \cdots O10	0.90 (3)	1.89 (4)	2.763 (4)	164 (3)
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2$	0.86 (4)	1.87 (4)	2.646 (3)	149 (4)
$\mathrm{O} 9-\mathrm{H} 9 A \cdots \mathrm{O} 8$	0.82 (4)	1.96 (4)	2.658 (3)	142 (4)
C18-H18A \cdots Cg4 ${ }^{\text {vii }}$	0.96	2.89	3.758 (4)	151
$\mathrm{C} 22-\mathrm{H} 22 A \cdots C g 3{ }^{\text {viii }}$	0.96	2.76	3.582 (4)	143

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y-1, z$; (iii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;$ (v) $-x,-y+1,-z+1$; (vi) $-x+1,-y+1,-z+1$; (vii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (viii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Compound (II)

Crystal data

$2 \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}^{2-}$
$M_{r}=382.39$
Monoclinic, $P 2_{1} / c$
$a=9.5394$ (5) A
$b=17.8475$ (9) \AA
$c=10.4174$ (5) A
$\beta=94.136(1)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997b)
$T_{\text {min }}=0.947, T_{\text {max }}=0.972$
$V=1768.99(15) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=297$ (2) K
$0.20 \times 0.20 \times 0.13 \mathrm{~mm}$

19241 measured reflections 3840 independent reflections 3138 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.155$
$S=0.82$ independent and constrained refinement
3840 reflections
252 parameters

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1A . . O 6	0.84 (3)	1.94 (3)	2.767 (2)	168 (3)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O} 2$	0.93 (4)	1.70 (4)	2.542 (3)	150 (3)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	0.79 (3)	1.95 (3)	2.737 (2)	174 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {i }}$	0.90 (3)	1.80 (3)	2.685 (2)	166 (2)
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 4^{\text {ii }}$	0.83 (3)	1.91 (3)	2.725 (2)	167 (2)
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.93	2.36	3.287 (3)	175
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 3^{\text {iii }}$	0.93	2.55	3.333 (3)	142
$\mathrm{C} 13-\mathrm{H} 13 A^{\cdots} \cdot \mathrm{O}^{\text {iv }}$	0.93	2.43	3.230 (2)	144

Symmetry codes: (i) $x-1, y, z-1$; (ii) $-x+1,-y,-z+2$; (iii) $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv)
$x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.

Table 3
Geometry of $\pi-\pi$ stacking interactions for (I) and (II) (${ }^{\circ}, \AA$).
For (I), $C g 1, C g 2, C g 3$ and $C g 4$ are the centroids of rings $\mathrm{C} 1-\mathrm{C} 6, \mathrm{C} 8-\mathrm{C} 13$, $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 15-\mathrm{C} 17$ and N3/N4/C19-C21, respectively, and for (II), Cg1 is the centroid of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 8-\mathrm{C} 10$ ring and $C g 2$ is the centroid of the $\mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 12-$ C14 ring.

CgI	CgJ	Dihedral angle	Centroid distance	Interplanar spacing
(I)				
Cg1	Cg1 ${ }^{\text {v }}$	0.00	4.200 (2)	3.667 (2)
Cg1	$C g 2{ }^{\text {ix }}$	3.5 (1)	4.187 (2)	3.478 (2)
Cg2	$C g^{\text {vi }}$	7.2 (1)	3.864 (2)	3.485 (2)
Cg3	Cg3 ${ }^{\text {v }}$	0.02 (1)	3.618 (2)	3.372 (2)
Cg4	$C g 2^{\text {vi }}$	2.30 (1)	3.864 (2)	3.485 (2)
(II)				
Cg1	Cg2 ${ }^{\text {i }}$	16.3 (1)	3.582 (2)	3.490 (2)
Cg2	Cg2 ${ }^{\text {v }}$	0.03 (1)	3.523 (2)	3.231 (2)

For both compounds, H atoms bonded to C atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.96 \AA$ (methyl), and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (aromatic C) or $1.5 U_{\text {eq }}$ (methyl C). H atoms bonded to N and O atoms were found in Fourier difference maps. $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distances were refined freely $[\mathrm{N}-\mathrm{H}=0.79(3)-0.89(4) \AA$ and $\mathrm{O}-\mathrm{H}=0.82(4)-0.93(4) \AA]$ and $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work received financial support mainly from the National Key Fundamental Project (grant No. 2002CCA00500).

[^0]
References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Anderson, K. M. \& Steed, J. W. (2007). CrystEngComm, 9, 328-330.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Das, D., Banerjee, R., Mondal, R., Howard, J. A. K., Boese, R. \& Desiraju, G. R. (2006). Chem. Commun. pp. 555-557.

Fan, S.-R., Xiao, H.-P. \& Zhu, L.-G. (2005). Acta Cryst. E61, o253-o255.
Meng, X.-G., Zhou, C.-S., Wang, L. \& Liu, C.-L. (2007). Acta Cryst. C63, o6670670.

Muthiah, P. T., Hemamalini, M., Bocelli, G. \& Cantoni, A. (2003). Acta Cryst. E59, o2015-o2017.

Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. \& Warzajtis, B. (2003). CrystEngComm, 5, 70-76.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Smith, G., Wermuth, U. D. \& Healy, P. C. (2005). Acta Cryst. C61, o555o558.
Smith, G., Wermuth, U. D. \& Healy, P. C. (2006). J. Chem. Crystallogr. 36, 841849.

Smith, G., Wermuth, U. D. \& White, J. M. (2004). Acta Cryst. C60, o575-o581. Smith, G., Wermuth, U. D. \& White, J. M. (2005a). Acta Cryst. C61, o105o109.
Smith, G., Wermuth, U. D. \& White, J. M. (2005b). Acta Cryst. E61, o313-o316.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, Z.-L. \& Wei, L.-H. (2007). Acta Cryst. E63, o1448-o1449.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3124). Services for accessing these data are described at the back of the journal.

